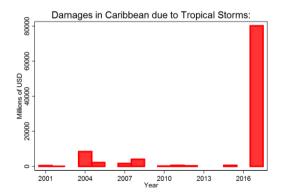


Hosted by the Eastern Caribbean Central Bank Basseterre, St. Kitts and Nevis. 19th—21st November, 2019.

Poverty and Hurricane Risk Exposure in Jamaica

Nekeisha Spencer¹ Eric Strobl²


¹University of the West Indies Mona

²University of Bern & SALISES

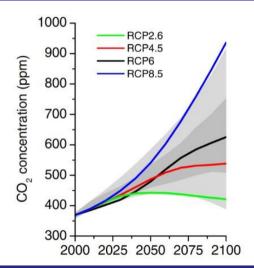
•00

Introduction

■ Since 2000 Caribbean has been affected by 40+ tropical storms → 10 billion USD in damages

Introduction

- Several studies [e.g.: Strobl (2012)]: hurricanes ⇒ potentially large (but short-lived) impact on Caribbean economies
- ... and similar result found at household level [Henry, Spencer and Strobl (2019) for Jamaica
- Question: Will things get worse with climate change?
- Villani & Vecchi (2013): Hurricane intensity ↑ under climate change in North Atlantic Ocean Basin


This Paper

- This Paper: We compare expected poverty increases of lamaican households for Current vs. Future Climate
- Approach:
 - Generate sets of synthetic hurricanes under current and future climate in the North Atlantic Basin
 - 2 Predict their impact on poverty in Jamaican households
 - 3 Compare expected losses

Climate Change Scenarios

- Future climate typically predicted under different GHG emission projections - but many different models
- We use 5 (CCMS5, IPSL5, MICRO5, MPI5, & MRI5) for Current (1981-2000) vs. Future (2081-2100) Climate RCP 8.5 GHG emission projection
- RCP 8.5, high emissions scenario:
 - High population growth
 - Relatively low income growth
 - Low technological improvements
 - ⇒ high energy demand ⇒ high GHG emissions!

Climate Change Scenarios

Synthetic Hurricane Generation

- To create set of hurricanes under each climate setting (current vs. future) for each model - Emanuel et. al (2008)
- Emanuel et. al (2008): models development, movement, & intensity of synthetic tropical storms
- 5,000 hurricanes generated for each setting
 - ⇒ 2 scenarios x 5 models x 5,000 hurricanes

Poverty Impact Approach

- Need to translate storms into household poverty
- Henry, Spencer and Strobl (2019): estimate how local wind experienced during hurricane | welfare over 1990-2010
- Similar approach but allow for differences in the damage function according to household wall type.
- Use estimate to infer the impact of hurricane damages to household poverty due to each storm

Household Poverty

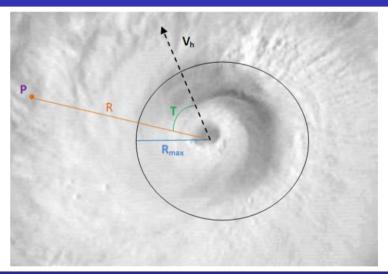
- Impact of hurricanes spatially heterogenous ⇒ need local distribution of a measure of household poverty
- Problem: 2012 Survey of Living Conditions (SLC) provides info on household consumption but not exhaustive...
-Population Census is exhaustive but no info on household consumption

Solution: Small Area Poverty Estimation [Elbers et al. 2003)]

- Method used to acquire estimates for areas of a population for which data are lacking
- We "borrow the strength" of the Census/its representativeness,
 - \Rightarrow poverty estimates for all small areas that are not covered in the SLC

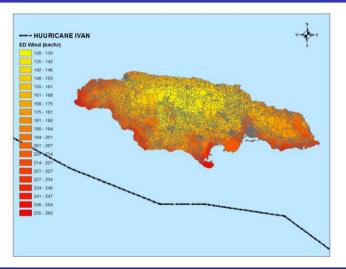
Two stages:

- 1. Estimate poverty model using household consumption per capita & characteristics incl. hhsize, building material, share of children
- 2. Monte Carlo Simulations ⇒ stage 1 estimates applied to census ⇒ data for all Jamaica


Local Hurricane Wind Speed

- Household location identified by enumeration district
- Thus need local maximum wind speed for each synthetic hurricane for each enumeration district
- Holland (1980): wind field model requiring minimum input to estimate local wind speed during a storm

Jamaica: Enumeration Districts



Wind Field Model

14/17

Wind Field Model Example: Hurricane Ivan (2004)

Storm Probabilities

- Approach above allows us to generate local maximum wind speed for each synthetic storm
- For expected losses we need the probability of each storm
- Following Emanuel (2011) for each of the ten sets of synthetic storms.
 - Randomly pick a year (ex: 1980, 1981..., 2000)
 - Randomly pick storm(s) within that year
 - Do this 100,000 times
 - ⇒ probability of each storm
 - ⇒ calculate the distribution of implied annual impacts

Changes in Household Poverty ($\%\Delta$)

GCM	CCMS5	IPSL5	MICRO5	MPI5	MRI5
20-year	-9.68	100.00	95.23	62.58	-65.27
50-year	-64.25	53.28	95.35	53.51	-98.83
100-year	-73.37	80.47	97.96	57.49	34.32
500-year	-93.23	73.46	98.90	52.99	46.73

Conclusion

- Findings: under most GCM models poverty will increase, likely to be substantial
- Policy: Find ways to buffer expected impacts

Caveats:

- Future emissions Uncertainty
- Model Uncertainty
- Adaption Uncertainty