A Computable General Equilibrium (CGE) Model of Banking System Stability: Case of Jamaica

Prepared for the 41st Annual Monetary Studies Conference, 10-13 November 2009 Bank of Guyana, Georgetown, Guyana Presenter: Jide Lewis Bank of Jamaica

OUTLINE OF PRESENTATION

- Motivation
- Literature review
- Overview of CGE Framework
- Agents in the framework
- Implementation
- Calibration
- Simulation Results
- Conclusion

Motivation

- Structural macroeconomic models, complex frameworks that allow for interactions between agents, are becoming common
- Most mainstream macroeconomic frameworks are based on an implausible assumption that no economic agent ever defaults.
- Can financial stability be modelled explicitly in such frameworks?
- Can policy be informed by financial stability considerations?

Bank Fragility Literature

NON- PARAMETRIC ESTIMATION TECHNIQUES

Kaminsky et. al (1998)

Honohan (1997)

LIQUIDITY MOTIVATED BANK DISTRESS

Allen & Gale (1998)

Morris and Shin (2000)

Empirical

Theoretical

Overview of Framework (Goodhart et. al 2006)

- Agents
 - Heterogeneous banks: $B = b \in B = \{\gamma, \delta, \tau\}$
 - Private Agents: $H = h \in H = \{\alpha^{\gamma}, \beta^{\delta}, \theta^{\tau}, \phi\}$
 - Central bank ~ Regulator

Markets

- Interbank market (B, CB)
- Loan market (B, H)
- Deposit market (B,H)
- Time horizon: $T = \{0, 1, \dots, \infty\}$
- **S** = {*i* (good), *ii* (bad)}. P(*s*=*i*)=*p*.

Time Structure of CGE Model

Overview of CGE Model

Regulator – Central Bank

Regulator – Central Bank

A set of parameters that affect the objective function and constraints of the banks.

- Regulator
 - Sets capital adequacy requirements: $\overline{k}_{t+1,s}^{b}$
 - Imposes penalties for failure to meet capital adequacy requirements: $\lambda_{k,s}^b$
 - Imposes penalties on default: λ_s^b
 - Sets the risk weight on market book investments, loans and interbank loans: $(\overline{\omega}, \omega, \widetilde{\omega})$.
- Central Bank
 - Conducts open market operations (OMOs)
 - Decides on the interbank rate ρ

Banking Sector

- The asset side of their balance sheets consists of loans, interbank lending, and investments, while liabilities include deposits, interbank borrowings, other liabilities and capital.
- Banks take all interest rates as exogenously determined.
- Each sector is distinguished by its unique portfolio deriving from different capital endowments and risk return preferences.
- Banks borrow from the non-bank private sector by way of deposits and from each other and the central bank via the interbank market. They also extend credit to the private sector and hold a diversified portfolio of investments

List of Variables

Assets

- \overline{m}_t^{\pm} : amount of credit that bank b offers in the period t
- A_t^b : bank b's investments
- a_i^{*} : bank b's interbank lendings

Liabilities

- $\mu_{d,i}^{b}$: bank b's deposits
- μ_i^{\flat} : bank b's debt in the interbank market in period t
- e^b: bank b's capital

Default Metrics

- $v_{t+1,s}^{\flat}$: repayment rate of bank b in t+1,s
- v_{t+1}^{s} : repayment rate of h_t^{b} in t+1, s
- $\widetilde{R}_{t+1,i}$: repayment rate expected by banks from their interbank lending in t+1
- $k_{+1,i}^{\flat}$: Capital adequacy ratio

Interest Rates

- r_t^b : lending rate offered by b
- $r_{d,i}^{b}$: deposit rate offered by b
- ρ_t : interbank rate in period t

Bank's Optimization Problem

Bank's optimization problem

QUADRATIC FUNCTION OF EXPECTED PROFITABILITY

$$\max_{\overline{m}_{t}, \mu_{t}^{b}, d_{t}^{b}, \mu_{d,t}^{b}, v_{t+1,s}^{b}, s \in S} E_{t}(\prod_{t+1}^{b}) = \sum_{s \in S} p_{s}\left[\frac{\pi_{t+1,s}^{b}}{10^{10}} - c_{s}^{b}\left(\frac{\pi_{t+1,s}^{b}}{10^{10}}\right)^{2}\right] - \sum_{s \in S} p_{s}\left[\lambda_{ks}^{b}\max[0, \overline{k}_{t+1,s}^{b} - k_{t+1,s}^{b}] + \frac{\lambda_{s}^{b}}{10^{10}}[\mu_{t}^{b} - v_{t+1,s}^{b}\mu_{t}^{b}] + \frac{\lambda_{s}^{b}}{10^{10}}[\mu_{d,t}^{b} - v_{t+1,s}^{b}\mu_{d,t}^{b}]\right]$$

Subject to balance sheet constraint

$$\overline{m_{t}}^{b} + A_{t}^{b} + d_{t}^{b} = \frac{\mu_{t}^{b}}{(1 + \rho_{t})} + \frac{\mu_{d,t}^{b}}{(1 + r_{d,t}^{b})} + e_{t}^{b} + Others \quad t^{b} \quad (1)$$

and

$$(1 + \rho_t) v_{t+1,s}^b \mu_t^b + v_{t+1,s}^b \mu_{d,t}^b + Others \ _t^b + e_t^b$$

$$\leq v_{t+1,s}^{h^b} (1 + r_t^b) \overline{m_t^b} + (1 + r_t^A) A_t^b + \widetilde{R}_{t+1,s} d_t^b (1 + \rho_t), \qquad s \in S \qquad (2)$$

Bank's (cont'd).

where:

$$\pi_{t+1,s} = v_{t+1,s}^{h^{b}} (1 + r_{d,t}^{b}) \overline{m}_{t}^{b} + (1 + r_{t}^{A}) A_{t}^{b} + \widetilde{R}_{t+1,s} d_{t}^{b} (1 + \rho_{t}) - ((1 + \rho_{t}) v_{t+1,s}^{b} \mu_{d}^{b} + (1 + r_{d,t}^{b}) v_{t+1,s}^{b} \mu_{d,s}^{b} + others_{t}^{b} + e_{t}^{b}), s \in S \quad (3)$$

Capital (t+1):
$$e_{t+1,s} = e_t^b + \pi_{t+1,s}^b$$
, $s \in S$ (4)

Capital adequacy ratio:

$$k_{t+1,s}^{b} = \frac{e_{t+1,s}^{b}}{\overline{\omega} v_{t+1,s}^{h^{b}} (1+r_{t}^{b}) \overline{m}_{t}^{b} + \widetilde{\omega} (1+r_{t}^{A}) A_{t}^{b} + \omega \widetilde{R}_{t+1,s} d_{t}^{b} (1+\rho_{t})}, \quad s \in S$$
(5)

BACK

Private Agents

Reduced-Form Equations

• Demand for loans

$$\ln(\mu_{t}^{h^{b}}) = a_{h^{b},2} trend + a_{h^{b},3} \ln[p(GDP_{t+1,i}) + (1-p)GDP_{t+1,ii}] + a_{h^{b},4} r_{t}^{b}$$
(6)

• Supply of deposits

$$\ln(d_{b,t}^{\theta}) = z_{b,1} + z_{b,2} \ln[p(GDP_{t+1,i}) + (1-p)GDP_{t+1,ii}] + z_{b,3}[r_{d,t}^{b}(pv_{t+1,i}^{b} + (1-p)v_{t+1,ii}^{b})] + z_{b,4} \sum_{b' \neq b \in B} [r_{d,t}^{b'}(pv_{t+1,i}^{b} + (1-p)v_{t+1,ii}^{b'})]$$
(7)

Reduced-Form Equations (cont'd)

• Loan repayment rates $\ln(\mathcal{V}_{t+1,s}^{h^{b}}) = g_{h^{b},s,1} + g_{h^{b},s,2} \ln[(GDP_{t+1,s}) + g_{h^{b},s,3}[\ln(\overline{m}_{t}^{\gamma}) + \ln(\overline{m}_{t}^{\delta}) + \ln(\overline{m}_{t}^{\tau})] \quad (8)$

• GDP

 $\ln(GDP_{t+1,s}) = u_{s,1} + u_{s,2}trend + u_{s,2}[\ln(\overline{m}_t^{\gamma}) + \ln(\overline{m}_t^{\delta}) + \ln(\overline{m}_t^{\tau})]$ (9)

Market Clearing Conditions

(Dubey et al. 2005)

- Bank *b*'s credit market clears $1+r_t^b = \frac{\mu_t^{h^b}}{\overline{m}_t^b}, h^b \in H^b, \forall b \in B$ (10)
- Bank b's deposit market clears

$$1 + r_{d,t}^{b} = \frac{\mu_{d,t}^{b}}{d_{b,t}^{\phi}}, \forall b \in B \qquad (11)$$

Interbank market clears

$$1 + \rho_t = \frac{\overline{B}_t + \sum_{b \in B} \mu_t^b}{M_t + \sum_{b \in B} d_t^b} \qquad (12)$$

Equilibrium Conditions

The monetary equilibrium with banks and default (MEBD) in time t is a set of endogenous variables such that:

- All banks maximize their expected future payoff
- All markets clear
- Banks form correctly their expectations about repayment rates they receive from their interbank lending.
- The reduced form equations for GDP, deposit supply, credit demands, and household repayment rates are satisfied.

Implications of M.E.B.D

- Agents (B,H) may choose in equilibrium a positive level of default.
- Financially fragile regimes are not incompatible with the existence of orderly markets
- Role for the Bank in mitigating or preventing the detrimental consequences of financial fragility.

Implementation

Bank's optimization problem

Subject to balance sheet constraint

and

posprofit1(b, 'normal', t) .. (1 + rho(t))*rpb(b, 'normal', t) *muint(b, t) + (1 + rbd(b, t))*rpb(b, 'normal', t) *mub(b, t) + ol(b, t) + cap(b, t)
- rph(b, 'normal', t)*(1 + rbd(b, t))*mbar(b, t) - (1 + roas(t))*OA(b, t) - rpint('normal', t)*dint(b, t)*(1 + rho(t)) =l= 0;
- ort+1, s <- ort +1, s <

Calibration: The Data

- All data were quarterly 1996:Q1 1998:Q1
- All variables in logs and adjusted by CPI Index

Macro-economic Variables

- 1. Private Consumption
- 2. GDP
- 3. Unemployment rate
- 4. Inflation rate

Banking Sector Variables

- 1. Total Assets
- 2. Total Loans
- 3. Non-performing Loans
- 4. Unsecured Lending

Monetary Aggregates

1. M3

Interest Rates

- 1. Deposit rates (by bank and sector
- 2. Loan rates (by bank and sector
- 3. 180-day OMO rate

Calibration

The following reduced-forms were calibrated using econometric techniques:

- <u>Household's demand for credit</u>: Long-run elasticities were estimated using the error-correction representation of a cointegrated system between credit, money, private consumption, inflation, interest rates, and unemployment. (Chrystal and Mizen (2005)).
- <u>Agent phi's supply of deposits</u>: The parameters were obtained from the estimation of a fixed-effects model on a panel data set containing bank-specific information about deposits, interest rates and real GDP

Calibration (cont'd)

- <u>Household's repayment rate</u>: The parameters were obtained from the estimation of a random-effects model on a panel data set containing bank-specific information about deposits, interest rates and real GDP.
- Real GDP: The parameters were extracted from a cointegration vector for credit and real GDP, characterized by the presence of a drift.

Simulation Results

Initial Equilibrium (MEBD) t=2005

Initial E	quilibrium		Exoger	nous variables in the	model
$r_t^{\gamma} = 0.1625$	$k_{t+1,i}^{\delta} = 0.17$	$e_{t+1,ii}^{\gamma} = 0.041$	$O the r_t^{\gamma} = 3.403$	$a_{\alpha^{\gamma},1} = -2.305$	$\lambda^b_{i(\forall b \in B)} = 0.1$
$r_t^{\delta} = 0.1501$	$k_{t+1,ii}^{\delta} = 0.12$	$e_{t+1,i}^{\delta} = 0.014$	$O the r_t^{\delta} = 0.899$	$a_{\beta^{\delta},1} = -5.288$	$\lambda^b_{i(\forall b \in B)} = 1.1$
$r_t^{\tau} = 0.1419$	$k_{t+1,ii}^{\tau} = 0.13$	$e_{t+1,ii}^{\delta} = -0.04$	<i>O</i> the $r_t^{\tau} = 0.249$	$a_{\theta^{\tau},1} = -2.33$	$z_{\gamma,2} = 7.358$
$r_{d,t}^{\gamma} = 0.043$	$k_{t+1,ii}^{\tau} = 0.11$	$e_{t+1,i}^{\tau} = 0.02$	$g_{\alpha^{\gamma},i,1} = -5.035$	$z_{\gamma,1} = -9.10$	$z_{\delta,2} = 3.258$
$r_{d,t}^{\delta} = 0.081$	$\pi^{\gamma}_{t+1,i} = 0.259$	$e_{t+1,ii}^{\tau} = 0.009$	$g_{\alpha^{\gamma},ii,1} = -5.14$	$z_{\delta,1} = -14.34$	$z_{\tau,2} = 3.258$
$r_{d,t}^{\tau} = 0.072$	$\pi^{\gamma}_{t+1,ii} = 0.254$	$\widetilde{R}_{t+1,i} = 0.989$	$g_{\beta^{\delta},i,1} = -5.14$	$z_{\tau,1} = -12.51$	$z_{b,3(\forall b \in B)} = 0.656$
$\mu_{d,t}^{\gamma} = 23.395$	$\pi^{\delta}_{t+1,i} = 0.050$	$\widetilde{R}_{t+1,i} = 0.954$	$g_{\beta^{\delta},ii,1} = -5.531$	$k_{t+1,s(\forall s \in S)}^{\prime} = 0.15$	$z_{b,4(\forall b \in B)} = -0.923$
$\mu_{d,t}^{\delta} = 1.625$	$\pi^{\delta}_{t+1,ii} = -0.006$	$\mu_t^{\alpha^{\gamma}} = 13.9$	$g_{\theta^{\tau},i,1} = -5.593$	$k_{t+1,s(\forall s \in S)}^{o} = 0.20$	$r_t = 0.0997$
$\mu_{d,t}^{\tau} = 6.00$	$\pi^{\tau}_{t+1,i} = 0.048$	$\mu_t^{\beta^\delta} = 0.741$	$g_{\theta^{\tau}, ii, 1} = -5.577$	$k_{t+1,s(\forall s \in S)}^{t} = 0.17$	<i>p</i> = 0.50
$k_{t+1,i}^{\gamma} = 0.11$	$\pi^{\tau}_{t+1,ii} = 0.032$	$\mu_t^{\theta^\tau} = 3.303$		$\lambda_{ks(\forall b \in B, s \in S)}^{\nu} = 0.1$	
$k_{t+1,ii}^{\gamma} = 0.08$	$e_{t+1,i}^{\gamma} = 0.011$	$\overline{B} = 1.87$			
$\overline{m}_t^{\gamma} = 12.025$	$d_{\tau,t}^{\phi} = 5.594$	$\mu^{\delta} = 2.519$	$a_{h^b,3(\forall h\in H^b)} = 1.31$	$e_t^{\gamma} = 4.084$	$\overline{\omega} = 1$
$\overline{m}_t^{\delta} = 0.644$	$d_t^{\gamma} = 6.465$	$\mu_t^{\tau} = 0.403$	$a_{h^b, 4(\forall h \in H^b)} = -3.66$	$e_t^{\delta} = 0.582$	$\omega(\tilde{\omega}) = 0.2$
$\overline{m}_t^{\tau} = 2.893$	$d_t^{\delta} = 0.236$	$v_{t+1,i}^{\alpha^{\gamma}} = 0.994$	$A_t^{\gamma} = 16.01$	$e_t^{\delta} = 1.652$	$\rho_t = 0.061$
$d_{\gamma,t}^{\phi} = 22.431$	$d_t^{\tau} = 1.241$	$v_{t+1}^{\beta^{\delta}} = 0.975$	$A_t^{\delta} = 4.69$		$a_{\alpha\gamma,2} = 0.025$ $a_{\alpha\delta,\gamma} = 0.12$
$d^{\phi}_{\delta,t} = 0.902$	$\mu_t^{\gamma} = 3.148$	$v_{t+1}^{\theta^{t}} = 0.93$	$A_t^{\tau} = 4.02$		$a_{\beta^{\tau},2} = 0.12$
$u^{\alpha^{\gamma}} = 0.570$	$v^{\gamma} = 0.080$	$v^{\delta} = -0.050$	$c^{\gamma} = 0.23$	$g_{h,a,2} = 1.203$	θ',2
$v_{t+1,ii} = 0.570$	$v_{t+1,i} = 0.969$	$v_{t+1,ii} = 0.939$	$c_{i}^{\gamma} = 0.35$	$g_{h,i,2} = -0.02897$	
$v_{t+1,ii}^{r} = 0.591$	$v'_{t+1,ii} = 0.954$	$v_{t+1,i}^{-} = 0.997$	$c_{ii}^{\delta} = 0.12$	$g_{1,n} = -0.0337$	
$v_{t+1,ii}^{p} = 0.571$	$v_{t+1,i}^{o} = 0.996$	$v_{t+1,ii}^{\tau} = 0.950$	$c_i^{\delta} = 0.96$	$\circ h, ii, 3 (\forall h \in H^b)$	
			<i>u</i> 0000		

Simulated Loan Portfolio

Simulated Deposits

Simulated Household Repayments

Simulated Net Interbank Lending

Conclusion

- Model performs satisfactorily in the prediction of medium-term trends which are relevant to the assessment of financial stability.
- Financial stability can be investigated in a single coherent framework which is empirically tractable as it is theoretically sound.

Research Agenda

- Calibration
- Evaluation of the consistency of macroforecasts

Thank you!

Household's Demand for Loans

Johansen Cointegration tests

No. of CV/ Statistic Critical Value (5%) Drob **	
NO. OF CV Statistic Childal Value (5%) Frob.	
None * 256.41 159.53 0.00	
At most 1 * 157.51 125.62 0.00	
At most 2 * 100.92 95.75 0.02	
At most 3 66.38 69.82 0.09	
At most 4 37.82 47.86 0.31	
At most 5 22.75 29.80 0.26	
At most 6 9.45 15.49 0.33	
At most 7 1.46 3.84 0.23	

	Max-Eigen		
No. of CV	Value	Critical Value (5%)	Prob.**
None *	98.90	52.36	0.00
At most 1 *	56.59	46.23	0.00
At most 2	34.54	40.08	0.18
At most 3	28.56	33.88	0.19
At most 4	15.07	27.58	0.74
At most 5	13.30	21.13	0.43
At most 6	7.99	14.26	0.38
At most 7	1.46	3.84	0.23

Household's Demand for Loans

Co-integrating Equation	CoinEq1
LM3(-1)	0.0
LPRIVCONS(-1)	0.0
LRGDP(-1)	-1.055690
	(0.07711)
	[-13.6915]
LUNSEC(-1)	1.00
NCS(-1)	3.6692
	(0.52615)
	[6.97378]
DS(-1)	0.0
UNEMPL(-1)	11.27959
	(1.07783)
	[10.4651]
INFL(-1)	-0.486423
	(0.74457)
	[-0.65330]

 $L_{t} = 1.05 \ln(GDP_{t+1}) - 3.66(CS_{t}) + 0.48(\pi_{t}) - 11.27(\Delta Unemp)$

Credit spread parameter: -3.66

Household's phi supply of deposits

$\ln(D_{i,t}) = \alpha_i + \beta_1 \ln(y_{t+1}) + \beta_2(dr_{i,t}) + \beta_3(dr_{i,t}) + \mu_{i,t}$

Method: Pooled Least Squares			
Number of Observations	637		
Number of Individual Banks	14		
Dependent variable:	$\ln(D_{i,t})$		
	Coefficient	Std. error	t-Statistic
α_i	-36.38	10.56	-3.344***
β_1	3.458	0.896	3.746***
β_2	-0.356	0.034	-10.455***
β_3	-1.067	3.125	-0.398
Adj- R^2	0.82		

*** indicates significance at the 1.0 per cent level and * indicates significance at the 10.0 per cent level

Household Repayment Rates

 $\ln(1 - NPL_{i,t+1}) = \alpha_i + \beta_1 \ln(GDP_{t+1}) + \beta_2(loans_{i,t}) + \mu_{i,t}$

Random-effects estimation of Household Repayment Rates

Method: EGLS			
Number of Observations	ons 643		
Number of Individual Banks	14		
Dependent variable:	$\ln(1 - NPL_{i,t+1})$		
	Coefficient	Std. error	t-Statistic
$lpha_i$	-15.24	2.01	-7.56***
$oldsymbol{eta}_{_1}$	1.303	0.173	7.506***
eta_2	-0.0189	0.0092	-1.83*
$\operatorname{Adj-} R^2$	0.1220		

*** indicates significance at the 1.0 per cent level and * indicates significance at the 10.0 per cent level

