# Intervention in the Foreign Exchange Market, Market Turnover and the Impact on Exchange and Interest Rate Dynamics in the Caribbean



Bank of Guyana Georaetown. Guyana



Dave.Seerattan@sta.uwi.edu www.ccmfuwi.org



#### FORMAT OF PRESENTATION

- 1. Introduction
- 2. Literature Review
- 3. Empirical Methodology
- 3. Results
- 4. Conclusions

## **INTRODUCTION - RATIONALE**

- The Importance of Exchange Rate "Management" Intervention, Policy Interest Rates
- The importance of the Policy Environment Volume, Volatility and Market Structure
- The Need for Empirical Facts to Inform Intervention Policy
- The Observed Relation and Feedback Effects between Intervention and Monetary Variables
- The Increasing Frequency of Shocks and the Need to Manage Liquidity at a Daily Frequency
- The Need for a Joint Empirical framework to look at a number of issues Simultaneously
- The Rationale for Multivariate GARCH

# LITERATURE REVIEW – The Channel of Intervention

- Portfolio Rebalancing of Agents' Portfolios (Galati and Melick 2002)
- Market Microstructure Emits information which modify expectations and change order flows (Lyons 2001)
- Signalling Signaling to agents the future stance of monetary Policy (Mussa 1981; Canales-Kriljenko et. Al. 2003)

## LITERATURE REVIEW – EMPIRICAL METHODS

- Good Reviews are Provided by Edison (1993) and Sarno and Taylor (2001)
- OLS Regression of means, risk premiums and order flow - Dominquez and Frankel (1993); Evans and Lyons (2002)
- Event Studies Fatum (2000)
- GARCH Dominquez (1998); Seerattan (2004)
- Markov Switching Beine et.al. (2003); Seerattan and Spagnolo (2007)
- Multivariate GARCH Beine (2004), Kim and Sheen (2006)

#### THE RATIONALE FOR THE MULTIVARIATE GARCH

- Can Explore the Full Range of Relations and Feedback Effects
- Can Investigate the Impact of Policy on both the 1<sup>st</sup> and 2<sup>nd</sup> Moments
- Daily Data Used Since CBs Now Need to Respond on Daily Basis
- It Allows the Derivation of Conditional Covariance and Correlation of Important Variable Over Time – The Cost of Policy Conflicts Due to Unsynchronized Implementation of Related Policy Instruments
- The BEKK Parametization chosen Reduces no. parameters to be estimated & covariance matrix will be positive semi-definite without additional restrictions being imposed

#### **MULTIVARIATE GARCH - BEKK**

### $H_{t+1} = C'C + A'\mathcal{E}_t\mathcal{E}_tA + B'H_tB$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix} \quad C = \begin{bmatrix} c_{11} & 0 & 0 & 0 \\ c_{21} & c_{22} & 0 & 0 \\ c_{31} & c_{32} & c_{33} & 0 \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$$

$$\begin{split} h_{11,t+1} &= a_{11}^2 \varepsilon_{1,t}^2 + 2a_{11}a_{12}\varepsilon_{1,t}\varepsilon_{2,t} + 2a_{11}a_{31}\varepsilon_{1,t}\varepsilon_{3,t}\varepsilon_{3,t}^2 + 2a_{11}a_{41}\varepsilon_{1,t}\varepsilon_{4,t}\varepsilon_{4,t}^2 \\ &\quad + a_{21}^2 \varepsilon_{2,t}^2 + 2a_{21}a_{31}\varepsilon_{2,t}\varepsilon_{3,t} + a_{31}^2 \varepsilon_{3,t}^2 + a_{31}^2 \varepsilon_{3,t}^2 + 2a_{31}a_{41}\varepsilon_{3,t}\varepsilon_{4,t} + a_{41}^2 \varepsilon_{4,t}^2 \\ &\quad + b_{11}^2 h_{11,t} + 2b_{11}b_{12}h_{12,t} + 2b_{11}b_{31}h_{13,t} + 2b_{11}b_{41}h_{14,t} \\ &\quad + b_{21}^2 h_{22,t} + 2b_{21}b_{31}h_{23,t} + 2b_{31}b_{41}h_{34,t} \\ &\quad + b_{31}^2 h_{33,t} + 2b_{31}b_{41}h_{34,t} + b_{41}^2 h_{44,t} \end{split}$$

$$L(\theta) = -\frac{TN}{2} \ln(2\pi) - \frac{1}{2} \sum_{t=1}^{T} \left( \ln \left| H_t \right| + \varepsilon_t' H_t^{-1} \varepsilon_t \right)$$

#### MULTIVARIATE GARCH – MEAN EQUATIONS

$$\begin{split} ER_{1,t} &= \delta_1 + \delta_{11} ER_{t-1} + \delta_{12} I_{t-1} + \delta_{13} RR_{t-1} + \delta_{14} MV_{t-1} + \varepsilon_{1,t} \\ I_{2,t} &= \delta_2 + \delta_{21} ER_{t-1} + \delta_{22} I_{t-1} + \delta_{23} RR_{t-1} + \delta_{24} MV_{t-1} + \varepsilon_{2,t} \\ RR_{3,t} &= \delta_3 + \delta_{31} ER_{t-1} + \delta_{32} I_{t-1} + \delta_{33} RR_{t-1} + \delta_{34} MV_{t-1} + \varepsilon_{3,t} \\ MV_{4,t} &= \delta_4 + \delta_{41} ER_{t-1} + \delta_{42} I_{t-1} + \delta_{43} RR_{t-1} + \delta_{44} MV_{t-1} + \varepsilon_{4,t} \end{split}$$

# **EMPIRICS - DATA**

- Daily data
- Jamaica had 1162 Observations from Feb 7, 2002 To Sep 28, 2006 while T&T had 2393 Observations from Jan 3, 2000 To Sep 30, 2009
- Exchange rates Measured as the Intervention Currency per Domestic Currency – Variable used defined as 100\*log(xrate/xrate{1})
- Intervention measured as Daily Purchases and Sales of the Intervention Currency
- Interest rates used are the repo rate in Jamaica and the interbank rate in T&T- Variable used defined as 100\*log(day180/day180{1})
- Volume data is the daily sales and purchases of FC by the public
- All variables are I(0)

|                  | Exchange       |              | Intervention   |              | Interest       |              | Volume |              |
|------------------|----------------|--------------|----------------|--------------|----------------|--------------|--------|--------------|
|                  | Rate           |              | ( <i>i</i> =2) |              | Rate           |              | (i=4)  |              |
|                  | ( <i>i</i> =1) |              |                |              | ( <i>i</i> =3) |              |        |              |
| $\delta_{_{Ii}}$ | -0.19          | <u>-0.43</u> | 0.019          | <u>2.70</u>  | -0.003         | <u>-2.15</u> | -0.001 | <u>-5.19</u> |
| $\delta_{2i}$    | -0.13          | -2.90        | 0.46           | <u>16.13</u> | -0.003         | <u>-1.22</u> | -0.004 | <u>-6.84</u> |
| $\delta_{3i}$    | 1.47           | <u>2.79</u>  | -0.17          | <u>-1.42</u> | -0.25          | <u>-4.42</u> | -0.001 | <u>-0.59</u> |
| $\delta_{4i}$    | 11.57          | <u>3.20</u>  | 8.82           | <u>6.48</u>  | 0.13           | <u>1.01</u>  | -0.39  | <u>-13.0</u> |
| $a_{1i}$         | 0.77           | <u>24.4</u>  | 0.15           | <u>1.92</u>  | -0.56          | <u>-0.53</u> | -10.3  | <u>-3.1</u>  |
| $a_{2i}$         | 0.08           | <u>7.64</u>  | 0.004          | <u>0.03</u>  | 0.29           | <u>1.70</u>  | 0.75   | <u>0.31</u>  |
| $a_{3i}$         | 0.002          | <u>1.03</u>  | -0.004         | <u>-1.81</u> | -0.93          | <u>-34.6</u> | -0.31  | -1.37        |
| $a_{4i}$         | 0.0004         | <u>2.77</u>  | 0.007          | <u>12.54</u> | 0.005          | <u>1.4</u>   | 0.80   | <u>117.9</u> |
| $b_{li}$         | 0.65           | <u>9.34</u>  | -0.15          | <u>-1.99</u> | -1.5           | -2.44        | 8.78   | <u>2.92</u>  |
| $b_{2i}$         | -0.03          | <u>-2.9</u>  | -0.09          | -2.67        | 0.38           | <u>1.97</u>  | -1.64  | <u>-0.84</u> |
| $b_{3i}$         | -0.001         | <u>-1.0</u>  | 0.002          | <u>0.97</u>  | 0.42           | <u>3.71</u>  | 0.62   | <u>3.2</u>   |
| $b_{4i}$         | -0.001         | <u>-4.39</u> | -0.006         | <u>-3.9</u>  | -0.006         | <u>-0.2</u>  | -0.05  | <u>-0.91</u> |
| LBQ(10)          | 53.8           | (0.00)       | 29.4           | (0.00)       | 13.1           | (0.21)       | 126.2  | (0.00)       |
| LBQs(10)         | 0.72           | (0.99)       | 29.0           | (0.00)       | 1.62           | (0.99)       | 26.6   | (0.00)       |
| LLR              | -7860          |              |                |              |                |              |        |              |

Table 1: Estimated coefficients for the multivariate GARCH model for Jamaica

Notes: LBQ(10) and LBQs(10) are the Ljung-Box Q-statistics for standardized and squared standardized residuals at lag 10 respectively and LLR is log likelihood ratio. Values underlined are t-values and those in brackets are the probabilities for the Ljung-Box Q-statistics.

|               | Exchange       |               | Intervention   |               | Interest |              | Volume         |              |
|---------------|----------------|---------------|----------------|---------------|----------|--------------|----------------|--------------|
|               | Rate           |               | ( <i>i</i> =2) |               | Rate     |              | ( <i>i</i> =4) |              |
|               | ( <i>i</i> =1) |               |                |               | (i=3)    |              |                |              |
| $\delta_{li}$ | -0.38          | <u>-19.5</u>  | 0.001          | <u>2.53</u>   | 0.002    | <u>0.82</u>  | -0.0005        | <u>-0.57</u> |
| $\delta_{2i}$ | 0.06           | <u>0.11</u>   | 0.01           | <u>0.65</u>   | -0.05    | <u>-1.33</u> | -0.003         | <u>-1.46</u> |
| $\delta_{3i}$ | -0.11          | <u>-0.53</u>  | 0.01           | <u>2.25</u>   | -0.12    | <u>-3.56</u> | 0.001          | <u>1.02</u>  |
| $\delta_{4i}$ | 3.25           | <u>0.84</u>   | 0.09           | <u>1.05</u>   | 0.33     | <u>0.84</u>  | -0.41          | <u>-21.9</u> |
| $a_{li}$      | -1.09          | <u>-109.1</u> | -0.59          | <u>-1.67</u>  | -0.47    | <u>-0.75</u> | -98.7          | <u>-10.9</u> |
| $a_{2i}$      | 0.001          | <u>5.7</u>    | -0.98          | <u>-238.1</u> | 0.02     | <u>1.36</u>  | 1.18           | <u>5.9</u>   |
| $a_{3i}$      | -0.003         | <u>-0.81</u>  | -0.06          | <u>-1.53</u>  | 0.99     | <u>160.5</u> | -0.05          | <u>-0.09</u> |
| $a_{4i}$      | 0.002          | <u>13.4</u>   | 0.006          | <u>1.38</u>   | 0.002    | <u>0.81</u>  | 0.71           | <u>6.53</u>  |
| $b_{li}$      | 0.11           | <u>6.25</u>   | -1.85          | <u>-2.62</u>  | -0.27    | <u>-0.77</u> | -34.9          | <u>-3.1</u>  |
| $b_{2i}$      | 0.001          | <u>1.59</u>   | 0.18           | <u>4.48</u>   | -0.007   | <u>-1.04</u> | 0.14           | <u>0.43</u>  |
| $b_{3i}$      | -0.001         | <u>-0.76</u>  | 0.01           | <u>0.88</u>   | 0.13     | <u>4.23</u>  | -0.59          | <u>-0.61</u> |
| $b_{4i}$      | 0.0002         | <u>2.96</u>   | 0.003          | <u>1.7</u>    | 0.002    | <u>0.80</u>  | 0.37           | <u>11.5</u>  |
| LBQ(10)       | 219.5          | 0.00          | 78.5           | 0.00          | 36.2     | 0.00         | 274.4          | 0.00         |
| LBQs(10)      | 18.3           | 0.05          | 13.7           | 0.19          | 4.4      | 0.93         | 38.0           | 0.00         |
| LLR           | -24862         |               |                |               |          |              |                |              |

Table 2: Estimated coefficients for the multivariate GARCH model for Trinidad and Tobago

Notes: Same as Table 2.

# PRELIMINARY CONCLUSIONS

- Central bank intervention tended to move the exchange rate in the desired direction in both Jamaica and T&T
- The BOJ tended to lean against the wind while the CBTT did not, implying CBTT not targeting the trend rate
- The relationship between intervention and interest rates is best characterized by the signaling framework in Jamaica
- The implementation of DI caused increased xrate volatility in the short term in Jamaica buy not T&T
- Less volatility in Jamaica when policy interest rate used compared to DI
- Spillovers from xrate to trading volume in Jamaica suggest the microstructure and MDH a factor in the market – not a factor in T&T
- Differences generated by the market structure where the Jamaican market is more constrained by opportunity cost on the interest rate side because of the structure of SS and DD

## END

## **THANK YOU**



Dave.Seerattan@sta.uwi.edu www.ccmfuwi.org

