Measuring Financial Contagion Risks in the Caribbean:

The Caribbean Regional Financial Project (CRFP)

Elie Canetti* Advisor, Western Hemisphere Department, International Monetary Fund

*This presentation represents the personal views of Elie Canetti, and should not be construed to represent the views of the IMF's staff or Executive Board.

Outline

- CRFP Project Overview
- Analytical Considerations
- A Methodological Digression: Mapping Interconnectedness
- Data Template

The Caribbean Regional Financial Project (CRFP) Project Overview: Work Program

- March 2013 Initial Request
- May 2013 Terms of Engagement
 - IMF/CARICOM Governors
 - CBTT To Coordinate
- Phase I Analysis
 - July 2013 Considerations
 - Oct. Dec. 2013 Draft Data Template
 - Data Collection
 - Produce Interconnectedness Maps
 - Network Simulations
- Phase II Policy Phase (2015?)

Who Does What?

- CARICOM Governors Steering Committee
- RFSCC Regional Coordinating Body
- Central Bank of Trinidad and Tobago (CBTT)
 - Secretariat
 - Data Repository
- IMF Leads Analytical Work

Phase I – Analytical Component

Descriptive Stocktaking*

- Size of the Financial System
- Financial Ownership Structure
- Frameworks for:
 - Regulation
 - Supervision
 - Safety nets
 - Crisis management
- Map Interconnections

Stress Testing (Network Simulations)

* See "Financial Integration in the Nordic-Baltic Region: Challenges for Financial Policies", IMF, 2007 and "Financial Interconnectedness and Financial Sector Reforms in the Caribbean, IMF WP/13/175

Handoff Analysis After Phase I

- Ongoing Work by Regional Central Banks
 - Data Collection
 - Identify and Fill Data Gaps
 - Interconnectedness analysis and simulations
 - Enrich Analysis

Phase II - Policy Component

- Regional Supervision
- Regional Legal Framework
- Crisis Prevention and Management
 - Information Sharing
 - Policy Instruments
 - Financial Safety Nets
 - Cross–Border Resolution Regimes

II. Analytical Considerations

Potential Goals of Interconnected Analysis. To identify:

- Systemically important financial institutions (SIFIs)
- Clusters of financial institutions
- Common exposures (countries, sectors, instruments)
- Common funding sources
- Currency or Maturity Mismatches
- Common Business Models
- Systemically Important Financial Infrastructure Institutions
- Institutions with few substitutes

Analytical Constructs

- Centrality Analysis
 - Find "central" nodes in a financial network (most interconnections)
- Cluster Analysis
 - Identify subgroups of interconnected nodes within a system
- Systemic Importance
 - Assume failure of each institution and measure the systemic losses

Interconnectedness Map Example: Cross-Border Funds

Principal Nodes (Most Interconnections) – Note Luxembourg's Importance as a Conduit

Source: "Understanding Financial Interconnectedness", IMF, 10/4/10

III. A Methodological Digression

- It is intended to analyze interconnectedness through the Network Approach of Espinosa and Sole*
- See also IMF Global Financial Stability Report, April 2009, "Assessing the Systemic Implications of Financial Linkages"
- As an aside:
 - April 2009 GFSR used four techniques to assess systemic linkages:
 - Network approach
 - Co-Risk Model
 - Distress Dependence Matrix
 - Default Intensity Model
 - Co-Risk and Distress Dependence rely heavily on market data (typically CDS). They help assess market views of interconnectedness, but not enough data to use for Caribbean.
 - Default Intensity requires a large sample of bank default data.

Espinosa, Marco and Juan Sole, "Cross-Border Financial Surveillance: A Network Perspective, IMF WP/10/105, April 2010

Espinosa and Sole Model: Network Simulations

Before the Shock

- Assets = Bilateral Claims on Other Banks 1 to j plus other assets (a) Capital = Each bank i has capita k_i
- Liabilities = Deposits, Bonds and interbank borrowings.

Assume one bank defaults. Each bank exposed to it loses λ (the loss-given-default rate) times its exposure to that bank. This reduces assets and, by assumption, capital by that amount.

Algorithm

First Round

- Which banks become insolvent (capital wiped out) from initial shock?
- Second Round
 - Which banks become insolvent from the first round shock
- End the Loop
 - Keep doing rounds until no more banks become insolvent

Liquidity Extension: Credit+Funding Shock

Bank h defaults, bank i can only replace $(1-\rho)$ of its funding. So interbank lending falls by ρ times its funding from that bank. It is assumed it then as to liquidate that amount of assets, but must sell them at a discount, δ . Thus, it's asset losses are greater than its loss of liquidity, and this hits capital.

Outputs

- Assume every institution in system defaults. For each:
 - Obtain total number of other institutions that fail
 - Obtain total loss of capital (even without domino effects)
 - These can be used as measures of the institution's systemic importance

Other Extensions

- Can do at the level of systems
- Can take into account risk transfers if data available

Data Requirements

Required

- Matrix of Gross Inter–Institution exposures
- Capital by Institution
- Highly Desired
 - Sectoral Exposures by Institution
 - Allows one to simulate which institutions will default in response to a specific credit risk
 - Simulate how that credit shock propagates through system
 - Composition of assets and liabilities
 - Allows one to simulate a shock to a specific instrument (e.g. bonds, a deposit run, etc.)

Example: Contagion Path Triggered by Failure of Italian Banks

Figure 7: Contagion Path Triggered by the Italian Failure under the Credit Shock Scenario

Panel 3 (2^{na} contagion round) Affected Countries: Italy, France, Belgium, Germany, Switzerland. Panel 4 (final round) Affected Countries: Italy, France, Belgium, Germany, Switzerland, Austria, Sweden, Netherlands.

IV. Data Considerations: Perimeter of Coverage

- Type of Institution
 - Banks
 - Insurers
 - Credit Unions
 - Securities Firms
- Size of Institution
- Size of Counterparties

Data Considerations: Level of Aggregation

- Level of Aggregation
 - Institution-to-Institution
 - Institution-to-Aggregate
 - Aggregate-to-Aggregate
- Note, Thacker et. al. mapped interconnectedness using:*
 - Public Information on banks (Bankscope)
 - Information on assets and ownership
 - No interconnectedness data
 - BIS aggregate data on banking systems
 - Bilateral connections of BIS reporting banks in 25 reporting countries to Caribbean destinations
 - A-A data
 - Misses direct links of Caribbean destinations to each other
 - Misses non-banks
 - CPIS only 2 Caribbean jurisdictions (Bahamas and Barbados) report

*"Financial Interconnectedness and Financial Sector Reforms in the Caribbean", IMF WP/13/175

Data Considerations: Crossings

Crossings

- Country
- Sector
- Instrument
- Currency
- Maturity
- More Crossings Imply
 - Richer "What-If" Experiments...
 - ... but Exponential Increase in Data Requirements

A 5-way crossing with x categories in each would require x⁵ separate data entries per institution

Data Considerations: Risk Concept

Immediate Risk Basis

- Data Easier to Collect
- But May Give Misleading Understanding of Economic Risks
- Final Risk Basis
 - Nets out Collateral
 - Nets out "Risk Transfers"
 - Guarantees
 - Hedges (Financial, not Garden)
 - Extremely Difficult to Measure
 - Degree of Risk Transfer May Be Contingent on Circumstances

Data Considerations Confidentiality Issues

- Do Legal Frameworks Vary Across Jurisdictions?
- Can Supervisors Share Individual Institution Data?
 - With IMF
 - Yes, Given IMF's Confidentiality Framework (data may need to be coded)
- Can Supervisors Share Counterparty Information
 - With Other Supervisors?
 - With IMF?
- Use of Coding Systems
 - Can an Independent Party Assign Codes
 - Could IMF Do Analysis Without Data Retention?

CRFP - An Interim Way Forward

- Use Aggregated Data on Sector by Nationality
- Units of Analysis (by Country):
 - Banking Systems
 - Sovereigns
 - Insurers (hopefully)
 - Credit Unions?
 - Others?
- It is critical to have a commonly shared definition (i.e. list of specific institutions) of each sector
 - Otherwise, interconnectedness map will be inaccurate – nodes have to be uniformly defined

Ultimate Objective

Institution-to-Institution Data Will Remain Critical

- Sectoral Aggregates Mask Critical Information
- Financial Crises Begin as Crises of Institutions
- Network Simulations Misleading with Aggregates
 - Require Huge Shocks for a Sector to Become Collectively Insolvent
- Continue to Work on Legal Frameworks for Information Sharing